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Exploiting Causal Chains for Domain Generalization 

Background
We often encounter distribution shifts from train to test time; how can one 
learn a predictor that generalizes well to test distributions in this setting?

Invariant Causal Predictors
Assume that datasets belong to distinct domains identified by distinct 
interventions on the same shared causal mechanisms, resulting in different 
distributions

Invariant Mechanisms: Across domains, 𝜇 𝑌 parents 𝑌 ) does not change, 
though the data distribution can be arbitrarily different. Consequently, 
identifying parents 𝑌 is sufficient to learn a predictor that is robust to 
distribution changes.

Representations that induce Invariant Predictors
When features are latent, a similarly strategy is to learn an embedding function 
Φ that induces invariance across training distributions, i.e.,

𝜇 𝑌 Φ(𝑋)).

Invariant Risk Minimization (IRM): Learn a representation Φ such that 
the optimal predictor 𝑤, across domains ℰ!", is the same:

Let 𝑤∗ be the optimal invariant predictor that we aim to identify.

The Risks of Invariant Risk Minimization: Let 𝐸 be the number of 
distinct training domains and 𝑑$ the dimensionality of non-invariant features):
Linear case
• If 𝐸 ≤ 𝑑$: There exists a feasible linear Φ which depends on non-invariant 

features and obtains a lower training risk than the optimal invariant 
predictor  𝑤∗

• If 𝐸 > 𝑑$: The optimal invariant predictor 𝑤∗ achieves the lowest training 
risk

Nonlinear case
• IRM behaves just like ERM at test time

Experiments
We evaluate the following linear-Gaussian structural equation model (SEM):

𝒮𝒞ℳ(𝑒) = 9
𝑧%$ ∼ 𝒩 0, 𝜎%& $𝐼'!

𝑦$ = 𝑧%$𝛼 + 𝜀
𝑧$$ = 𝑦$𝛾 + 𝜂

,

where 𝑑% , 𝑑$ are the dimensions of 𝑧% , 𝑧$, respectively, 𝜀 ∼ 𝒩 0, 𝜎(& $ , and   
𝜂 ∼ 𝒩 0, 𝜎)&

$𝐼'" .

Φ,Ψ: ℝ'!*'" → ℝ, 𝜃+: ℝ → ℝ ∀ 𝑖.

• Loss function: Mean Squared Error; TCRI: HSIC
• 𝜃% = 1.0, is a dummy predictor; 𝑥$ = concatenation of 𝑧%$ , 𝑧$$.

Results
Below are relative mean squared errors, ,-./01234

567
. Errors are computed for each 

domain independently – average is across all test environment errors and 
worst case is the worst error achieved on a distinct test domain. 

Summary of Results
• ERM performs best on average across train and test domains

• Does not consider how large a distinct domain’s error can be
• Utilizing non-general features yields lower errors during training

• IRM is worse than ERM in this setting
• We observe that IRM relies on domain-specific features more than 

ERM
• TCRI outperforms ERM and IRM in the worst case

Ongoing Work
• Experiments on real-world datasets using TCRI

• Comparison to more SOA models on benchmark datasets
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Target Conditioned Representation 
Invariance (TCRI)
Define two feature embedding functions Φ,Ψ – domain general and domain 
specific, respectively. These two embeddings are related by TCRI:

Φ 𝑋 ⊥ Ψ 𝑋 | 𝑌, 𝑒.

(1) 𝜃% – optimal linear predictor on Φ across environments.

(2) 𝜃8, 𝜃&, … , 𝜃9 – optimal linear predictors on Ψ for each environment. 

(3) The TCRI captures the constraint Φ 𝑋 ⊥ Ψ 𝑋 | 𝑌 ∀ 𝑒.

One option is the V-statistic-based Hilbert-Schmidt Independence Criterion 
(HSIC) estimate:

U𝐻𝑆𝐼𝐶 𝑋, 𝑌 =
1
𝑛&
trace 𝑲::#𝑯;𝑲<<#𝑯; ,

where 𝑲::# , 𝑲<<# ∈ 𝑅;×; are Gram matrices, 𝑲::#
𝒊,𝒋 = 𝜙 𝑋+ , 𝑋A , 𝑲<<#

𝒊,𝒋 = 𝜙(𝑋+ , 𝑋A), 

𝑯; =
8
;
𝑰;𝑰;B is a centering matrix, 𝑰; is the 𝑛×n dimensional identity matrix.

Another is the norm of the conditional cross-covariance:
ΣC$C% | E = ΣC$C% − ΣC$EΣ<E

F8Σ<C% .

Contribution

Shaded nodes are observed while others are latent. 𝑒 indicates the domain and 
𝑋 a function of the two latents 𝑍% , 𝑍$.

Under this generative process in the graph above, we propose to enforce a 
different Markov property than ICP, namely

𝑍% ⊥ 𝑍$ | 𝑌, 𝑒. (𝑇𝐶𝑅𝐼)
⊥ means indicates independence.

We empirically show that under the chain generative model, the target 
conditioned representation invariance (TCRI) constraint yields a predictor that 
generalizes better than ERM and IRM to test distributions. 

Chain
𝒁𝒄 ⊥ 𝒁𝒆 | 𝒀, 𝒆
𝒁𝒄 is domain 

general

(1) (2) (3)

Algorithm Average Worst Case

Train Test Train Test

ERM baseline

IRM 1.08 1.24 1.92 2.16

TCRI (ours) 1.38 1.20 0.16 0.11

Causal 
(Oracle) 1.29 1.13 0.11 0.06


